
Raspberry PI 'How-To' Series

Using Software Defined Radio to Track Airplanes

KEEDOX DVB-T USB TV RTL-SDR

Written by: Sopwith
Revision 1.0

December 29, 2014
sopwith@ismellsmoke.net

“If it works out of the box – what fun is that?”
1

Introduction

Since I was a little boy I have had a fascination with airplanes. I am an active RC airplane modeler
and I have a radio scanner that I use to listen to air traffic control conversations. Imagine my
surprise when I came across a very interesting article in the December 2014 issue of LINUX
Magazine titled, “Plane Spotting.”

Written by Charly Kuhnast, the one-page article describes how to use a USB DVB-T device to
capture airplane traffic and plot it on a Google map. What a cool idea. Ol' Sopwith decided to
purchase a DVB-T and see if it would work on the Raspberry Pi.

A few Google searches and I determined the use of the DVB-T device is quite popular among
Linux users. And, of course, somebody has already figured out how to get the plane spotter app
working on a Pi. The most helpful article to me was written by David Taylor titled, “ADS-B
dump1090.”

This Raspberry Pi “How-To” provides detailed instructions on how to get the plane spotter
application up and running on a Pi. If you are in a hurry to get going, use David's article to
determine how to install the required software and configure the system.

If you are a new Raspberry Pi user and prefer clear instructions on how to get things working – this
article is for you.

Airplane Tracking

Almost all commercial airplanes around the globe transmit information about themselves on radio
frequency 1090 MHz. Known as the Automatic Dependent Surveillance-Broadcast System
 (ADS-B), an airplanes heading, speed, altitude, GPS position, flight number, and squawk ID are
repeatedly broadcast. This means anyone with the right radio receiver can receive these signals
from airplanes within reach of the receivers antenna.

With the amazing advancement of software defined radio (SDR) in recent years combined with the
dirt cheap availability of USB SDR devices, tracking airplanes and plotting them on a map is a
relatively simple process. The trick is to get the right Linux drivers installed and working.

Required hardware

The hardware requirements to get you tracking airplanes are minimal. You will need three devices:
1. A Raspberry Pi that can communicate with the Internet
2. A powered USB hub
3. A USB DVB-T device.

Any version of Raspberry Pi will work. For this “How-To,” I used a Rev-1 Pi with a usb wireless
network adapter. I installed Raspian and updated it. I also overclocked the Pi to “High” and enabled
SSH so I can manage it remotely.

I purchased a 7-port powered USB hub from Staples a while ago that has served me and my Pi's
well for over two years. You must use a powered USB hub for this project. The DVB-T device will
not get enough power from the Pi if you try to use one of the Pi's USB ports to power it.

I ordered a DVB-T USB device from Amazon in the UK since I live in London. It is hard to believe
this device was only £10 delivered to my front door. The device includes a mini infrared
remote-control and an external antenna. This device is highly capable. It can receive FM radio,
high-def terrestrial television signals as well as the 1009 MHz. signal we will receive from airplanes
overhead.

“If it works out of the box – what fun is that?”
2

http://www.linux-magazine.com/
http://www.linux-magazine.com/
http://www.staples.com/Staples-7-Port-Square-USB-2-0-Hub/product_650603
http://www.satsignal.eu/raspberry-pi/dump1090.html
http://www.satsignal.eu/raspberry-pi/dump1090.html
http://www.linux-magazine.com/Issues/2014/169/Charly-s-Column-Air-Traffic-Control/(language)/eng-US

Be sure to order the correct device for the area you live in. This particular device will not work in
the US if you are planning on watching terrestrial TV channels.

When my DVB-T device was delivered, I am ashamed to say that I installed the included software
on Mrs. Sopwith's Windows 7 laptop to see if the device provided good high definition TV service.
The software setup requires a “scan” to determine all the available channels. To my amazement,
the device found 88 television and FM radio stations. Wow. The terrestrial high definition streaming
video was fantastic. I was so impressed I ordered two more devices. The Mrs. surely enjoys her
new high-def TV that was once just a Windows laptop.

Step-by-Step

In this section I will walk you through all the steps of getting the airplane tracking system up and
running on your Pi. These are pretty much the exact same steps describe in David Taylor's blog.

1) Be sure your Pi has all the latest patches
Using a terminal window enter the following commands: $sud apt-get update
$sudo apt-get upgrade

2) Install git

“If it works out of the box – what fun is that?”
3

You can see in the above screen shots that my Pi already has git installed.

3) Install cmake

Answer 'Y' to the prompt and cmake will be installed.

4) Install build-essential

Build-essential is already installed on my Pi.

5) Install rtl-sdr from the git repository
When you clone a git repository, git will create a folder in your current working directory. I
created a directory named 'Downloads' and moved to that directory prior to the rtl-sdr
download.

“If it works out of the box – what fun is that?”
4

6) Change your current working directory to rtl-sdr

7) Make a directory named 'build.'

8) Change directories to build

9) Create the build environment for rtl-sdr using cmake

Notice that I got a compile error. The error message is telling me that LibUSB 1.0 is required to

“If it works out of the box – what fun is that?”
5

compile rtl-sdr. New users of the Pi are often frustrated by compiler and install errors. Most
error listings will tell you exactly what the problem is as in the case here.

10) Install LibUSB 1.0

Answer 'Y' to the prompt and LibUSB will be installed.

11) Create the rtl-sdr build environment again using cmake.
You can see in the figure below the creation of the build environment for rtl-sdr completed
successfully. We can now compile rtl-sdr.

12) Compile rtl-sdr

“If it works out of the box – what fun is that?”
6

You can see in all the neon-color glory that rtl-sdr compiled successfully.

13) Install rtl-sdr

14) Configure linker run-time binaries

15) Install udev rules
Change directories so you are just above the rtl-sdr directory. In my case, this is the
'Downloads' directory. Next, copy the rtl-sdr.rules file to the /etc/udev/rules.d directory.

16) Reboot your Pi: $ sudo reboot

17) Plug your DVB-T device into your powered USB hub

18) Test the rtl-sdr drivers
Enter the command shown in the below screen shot.

“If it works out of the box – what fun is that?”
7

Here we have a good-news - bad-news scenario. My DVB-T device was found. You can even
see the serial number of the device. So, we know the device is working. The bad news is that
the kernel could not access the device. As always in the Linux world – do not panic. Simple
read what the error message is telling you.

The kernel message says the device is already in use by another driver (dvb_usb_rtl28xxu). It
is also advising that we detach (unload) the offending kernel module or blacklist it so it is not
automatically loaded.

What happened here is that the kernel automatically plug-n-played the correct drivers for the
DVB-T device when it was plugged in. This included the necessary drivers to enable the
watching of high def TV stations. Since this is not our intended use of the device, we need to
advise the kernel not to load this driver.

19) Blacklist the dvb_usb_rtl28xxu driver
Change directories to /etc/modprobe.d. Now, edit the raspi-blacklist.conf file using nano.
(See command below).

Add the line highlighted in yellow in the below screen shot.

“If it works out of the box – what fun is that?”
8

Press <Ctrl>O then <Enter> to save your changes to the file. Press <Ctrl> X <Enter> to exit
nano. The line you just added tells the Linux kernel not to load the dvb_usb_rtl28xxu device
driver when it finds your DVB-T device.

Reboot you Pi: $ sudo reboot.

20) Test the rtl-sdr drivers
Once your Pi reboots, run the rtl_test using the below command.

You can see in the above screen shot. my rtl-sdr driver found my device and was able to
sample its gain values. You can safetly ignore the message about the E4000 tuner. At this
point we have the rtl-sdr driver working correctly. Now it is time to install the dump1090
application.

21) Install dump1090
Change directories to your home directory. In my case I moved to my Downloads directory.
Download the dump1090 from github.

22) Make dump1090
Change directories to where github placed the dump1090 directory and type make as shown in
in the below screen shot.

You can see above that my compile completed successfully. If you get an error complaining
that pkg-config is not installed, you can correct the problem by installing it.

“If it works out of the box – what fun is that?”
9

Once pkg-config is in place, recompile the dump1090 application.

Finally, we have everything we need to track airplanes. Let's test the dump1090 application.

23) Test dump1090
To run a simple test to ensure the dump1090 application works, enter the below command from
the dump1090 folder:
$./dump1090 --interactive
If everything is configured correctly you should see some airplane data appear.

Wow – how cool is that?

If you get an error message – do not panic. Simply follow the trail of the messages you see
from the app. Troubleshooting is part of the fun of Linux. Go back through the previous steps
and make sure you did not miss a step.

To exit the test press <Ctrl> C

24) Start the dump1090 web service
The real fun of this project is watching airplanes from a web browser. To do this, simply enter
the command shown in the below screen shot. The & at the end of the command tells Linux to
run the application in the background.

Open up a browser on your Pi or on another computer on your network. The Pi is a great web
server for this app but you may have trouble getting the Epiphany web browser to behave
properly. In my case I fired up Firefox on my Mrs. Sopwiths' laptop and pointed it to the IP
address of my Pi. (http://192.168.15.217:8080). Do not forget to include the colon followed by

“If it works out of the box – what fun is that?”
10

http://192.168.15.217:8080/

8080 since this is the port the web server is listening on.

25) Automatically start dump1090 at bootup (Optional)
If you want the dump1090 web server to start as a service on your Pi at start up you will need
to install a small start up script. Change directories to /etc/init.d and enter the command shown
in the below screen shot.

Copy and paste the script on the next page into nano. Be sure to change the PROG_PATH line
in the script to point the folder you installed dump1090 (Line .15).

Save the file (<Ctrl>O) and exit nano <Ctrl>X.

“If it works out of the box – what fun is that?”
11

#!/bin/bash
BEGIN INIT INFO

Provides: dump1090
Required-Start: $remote_fs
Required-Stop: $remote_fs
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: dump1090 initscript

END INIT INFO
Fill in name of program here.
PROG="dump1090"
PROG_PATH="/home/pi/Downloads/dump1090"
PROG_ARGS="--interactive --net --net-ro-size 500 --net-ro-rate 5"
PIDFILE="/var/run/dump1090.pid"

start() {
 if [-e $PIDFILE]; then
 ## Program is running, exit with error.
 echo "Error! $PROG is currently running!" 1>&2
 exit 1
 else
 ## Change from /dev/null to something like /var/log/$PROG if you want to save output.
 cd $PROG_PATH
 ./$PROG $PROG_ARGS 2>&1 >/dev/null &
 echo "$PROG started"
 touch $PIDFILE
 fi
}

stop() {
 if [-e $PIDFILE]; then
 ## Program is running, so stop it
 echo "$PROG is running"
 killall $PROG
 rm -f $PIDFILE
 echo "$PROG stopped"
 else
 ## Program is not running, exit with error.
 echo "Error! $PROG not started!" 1>&2
 exit 1
 fi
}

Check to see if we are running as root first.
Found at http://www.cyberciti.biz/tips/shell-root-user-check-script.html
if ["$(id -u)" != "0"]; then
 echo "This script must be run as root" 1>&2
 exit 1
fi

case "$1" in
 start)
 start
 exit 0
 ;;
 stop)
 stop
 exit 0
 ;;
 reload|restart|force-reload)
 stop
 start
 exit 0
 ;;
 **)
 echo "Usage: $0 {start|stop|reload}" 1>&2
 exit 1
 ;;
esac
exit 0

“If it works out of the box – what fun is that?”
12

When you are back at the command prompt, enter the command shown in the screen shot.
below. The first command makes the script file to executable. The second command updates
the rc script to include dump1090 at start up.

Summary

At this point you should have a working plane tracker running on your Pi. Congratulations!

This project has been a great deal of fun. Who would have thought for £10 I could purchase a USB
device that can capture airplane radio signals and map them on a Google map.

I live in a flat in East London not too far from the London City airport. I have learned so much about
London flights using my flight tracker. My flat is very close to the approach pattern of inbound
planes to Heathrow. It is such a joy to be able to predict when a plane will be passing overhead
and then determine so much about the flight.

I hope you enjoy this project as well.

Oh – and one more thing. This project would be a great way to get kids working with a Raspberry
Pi. Buy a kid a DVB-T and have some fun.

Sopwith

NOTE: This document was created entirely on a Raspberry PI using LibreOffice Writer. The screen
shots were captured with Scrot. The screen-shots were edited with the Gimp. Windows not
required.

“If it works out of the box – what fun is that?”
13

