
Raspberry PI 'How-To' Series

AM2302-DHT11/22 Temperature Sensors

Written by: Sopwith
Revision 1.0

February 8, 2015
sopwith@ismellsmoke.net

“If it works out of the box – what fun is that?”
1

Introduction

A very common use of the Raspberry Pi is interfacing with sensors. A favorite project among many
Pi enthusiasts is to build a weather station. There are many digital temperature/humidity sensors
on the market that work with the PI.

I wrote up a previous 'How-To' document for the Aosong AM2315 temperature/humidity sensor.
You can find it here: http://sopwith.ismell smoke.net/?p=46

In this 'How-To' I will walk through the process of interfacing the AM2302, DHT11, and DHT22
temperature sensors with the Pi. These sensors are available from Adafruit, Sparkfun, and other
vendors.

 DHT11 DHT22 AM2302

All three of the sensors work exactly the same. The only differences are form factor and accuracy.
The DHT11 is the cheapest of the bunch, but it also the least accurate. If you need more precision
use the DHT22 or AM2302. The only difference here is the packaging. The AM2302 is in a rugged
plastic container and it connects with wires instead of pins.

The datasheets for the devices can be found here:
DHT11 DHT22 AM2302

Challenges

There are a few important points to know about these devices. One of the good things is they only
need three wires to operate. V+, Gnd, and a single data pin. This makes them very easy to wire
up.

The bad news here is the devices use a non-standard digital interface protocol. The single data
wire requires the Pi to send a 'read' request to the sensor; then the sensor sends back the
temperature/humidity data in 41 pulses. A long pulse indicates a binary '1' and a short pulse is a
binary '0'. It is not important for you to understand the specific protocol details.

What is important to know is the Pi is not well equipped to interface with these types of devices.
Why? Because the Linux operating system on the Pi is not a 'real-time' OS. Unlike the Arduino, the
Pi uses a multi-process and multi-threaded operating system that time-slices to make it appear as
if many processes are running at the same time. This means the Pi spends a lot of time switching
between different processes.

The Arduino is much closer to a 'real-time' device since it focuses on a single specific task and
does it very fast. In short, the Arduino and similar devices are able to accurately transmit and
receive binary pulses from sensors with very precise timing. The Pi is not able to do this well.

The takeaway here is the fact a lot of work has to go in to writing software for the Pi that works with
fast devices like these temperature sensors. In fact, raw Python code is completely unable to
communicate with these devices because it is not fast enough. For this reason, most of the code
that 'talks' to these devices is written in C and Python programs are wrapped around a C interface.
These interfaces are not perfect and you will sometimes receive errors when reading these
devices.

“If it works out of the box – what fun is that?”
2

http://sopwith.ismell/
http://www.adafruit.com/datasheets/Digital%20humidity%20and%20temperature%20sensor%20AM2302.pdf
http://www.adafruit.com/datasheets/DHT22.pdf
http://www.micro4you.com/files/sensor/DHT11.pdf
http://sopwith.ismellsmoke.net/?p=46

Wiring

There are good tutorials on how to wire up one of these temperature devices to a Pi on the
Adafruit and Sparkfun web sites and other places. Below is a great diagram of the Pi GPIO pins
that can guide you where to connect the temperature sensor data pin.

Courtesy of http://wiringpi.com

You can safely connect the sensor to any of the pins shown in green above (GPIO 0-7). When you
use the software in this 'How-To', you will refer to the data pin by the BCM GPIO number listed in
the column next to 'Name' above. NOTE: There are some differences in the pin-outs of the
different Pi revisions so make sure you are connecting to the correct pins on your device.

For example, I connected my AM2302 sensor to the Pi GPIO1 pin. For software purposes this is
known as Pin-18.

Step-by-Step

Let's get to work getting your sensor up and running.

1) Be sure your Pi has all the latest patches
Using a terminal window enter the following commands:
$ sudo apt-get update

“If it works out of the box – what fun is that?”
3

http://wiringpi.com/

$ sudo apt-get upgrade

As you can see in the above screen shots, my Pi is current with patches. It may take some time
for these commands to complete on your system. Be patient. Also, be sure to reboot your Pi
after an upgrade.

2) Create a folder for downloads
I like to keep my Pi's tidy. I place all downloads in a folder named 'Downloads.' From your
terminal window, make sure you are in your /home (e.g. /home/pi) directory.
$ cd
$ mkdir Downloads
$ cd Downloads

3) Install git
Make sure you have the latest version of git.
$ sudo apt-get install git

While you are at it, make sure the Python header files are on you Pi.
$ sudo apt-get install python-dev.
(No screen shot provided.)

4) Download the Adafruit DHT22 library

From your terminal window, make sure you are in your Downloads directory.
$ git clone https://github.com/Adafruit/Adafruit_Python_DHT

“If it works out of the box – what fun is that?”
4

https://github.com/adafruit/Adafruit_Python_DHT

5) Install the Adafruit DHT22 library

$ cd Adafruit_Python_DHT
$ sudo python setup.py install

6) Wire up your sensor

If you have not already done so, connect your sensor to your Pi. One of the best investments
you can make is to purchase a PiCo b bler from Adafruit. This simple and inexpensive tool
makes it easy to wire up your sensors.

In the photos below you can see that I wired up my AM2302 sensor to my PiCobbler. The red
wire connects to the 3.3V pin, the black wire connects to ground, and the yellow GPIO/Data
wire is connected to GPIO port 18. If your AM2302 has a white wire it is not used. Notice I used
a jumper wire to connect the data pin. This was done to make the photo clearer.

NOTE: The AM2302 contains an internal pullup resistor so there is no need to install one when
using this device. This is not true with the DHT22 – you need a pullup resistor.

“If it works out of the box – what fun is that?”
5

http://www.adafruit.com/product/914
http://www.adafruit.com/product/914
http://www.adafruit.com/product/914

“If it works out of the box – what fun is that?”
6

If you are using the DHT11/22 device then you will need to use a 10K pullup resistor to ensure
the device works properly. The below image is from Adafruit and it show how to wire your
DHT11/22 device.

Facing the front of the device (grid side), the left pin (1) is for 5/3.3 volt power. Pin-2 is the data
pin and this should be connected to a Pi GPIO pin. Pin-3 is not used. Pin-4 should be
connected to ground.

The resistor is connected between Pin-2 of the device (data pin) and the power source. This is
shown clearly in the diagram below.

Image courtesy of Adafruit

The image below shows the breadboard I wired up with a DHT22 sensor. You can see I used
jumper wires, but the wiring is exactly the same as shown in the Adafruit diagram except I used
a different GPIO pin.

“If it works out of the box – what fun is that?”
7

7) Test the device

The Adafruit DHT22 library includes a test program which is quite handy.

As you can see in the above screen shot, I changed directories into the
Adafruit_Python_DHT/examples folder and listed the files there. Then I ran the AdafruitDHT.py
example program without any command line arguments so I can see the usage output.

This program expects two (2) command line arguments. 1) the device type (11|22|2302), and 2)
the GPIO pin your device is connected to. I have a DHT22 connected to GPIO port 18 so I will
run the program with the parameters 22 (DHT22) and 18 (GPIO port).

My device is working properly! Great. Due to the challenges describes earlier in this document,
there may be times when the application does not return any data. In my experience, this
happens very rarely – but you need to be aware of it. Also, the datasheet states the device will
not respond to a read request unless 2 seconds have passed since the previous read. If you
need to read the temperature more than once every two seconds then these devices will not
meet the needs of your project.

NOTE: Once you get a response from your sensor you no longer need the
Adafruit_Python_DHT folder. The library is now installed on you Pi and is available for use by
any Python scripts. Copy the AdafruitDHT.py script to another folder for later use.

8) Hack some code

Once you have your device working, no doubt you will want to customise some Python code to
make it do what you want. The great thing about the open-source community is the huge
codebase that is free to use and modify, and the willingness of others to help you.

I modified the AdafruitDHT.py code to include the date and time of the reading and also provide
a Fahrenheit temperature. The output of my code is shown below.

This code is useful if you want to write the output of your sensor readings to a file. It is tab
delimited so the output file can be opened into a nicely formatted worksheet in LibreOffice Calc.
I encourage you to learn the basics of Python. It is a marvelous and easy programming
language.

“If it works out of the box – what fun is that?”
8

For those that are interested, the below Python code is the AdafruitDHT.py example script that I
modified. I am sure you will agree, this code is quite simple to understand with basic Python
skills.

Lines 1-21
These are not shown but they only contain the Adafruit Copyright information.

Lines 22-25
These are the import declarations needed to access other Python modules.

Lines 29-38
This code handles the command line arguments and the usage screen.

Line 42
This line calls into a C code module to read the sensor. Notice this code will try to read the
sensor 15 times in 2-second intervals until it gets a good reading. This means you may be
waiting up to 30 seconds to get your results.

Line 49
This important line checks to see if valid data was sent from the sensor.

Lines 50-52
This is code I added. It determines and formats the current system time and it converts the
Celsius temperature value to Fahrenheit.

“If it works out of the box – what fun is that?”
9

Line 53
This line is the original print statement that I commented out.

Line 55
Prints an output header row. Comment this out if you do not want a header.

Line 56
Prints the tab-delimited output including the time and Fahrenheit reading.

Line 58
Advises if there was an error.

Summary

Hopefully, this 'How-To' has helped you get your sensors up and running. Congratulations! If you
have any problems be sure to send me an Email and I will help you in any way I can. Also, be sure
to visit my Blog once in a while. I am building a modular weather station kit designed to be used in
the education community.

Oh – and one more thing. Share your Pi adventures with a kid.

Sopwith
08-Feb-2015
London, UK
http://sopwith.ismellsmoke.net
sopwith@ismellsmoke.net

NOTE: This document was created entirely on a Raspberry PI using LibreOffice Writer. The screen
shots were captured with Scrot. The screen shots were edited with the Gimp. Windows not
required.

“If it works out of the box – what fun is that?”
10

mailto:sopwith@ismellsmoke.net
http://sopwith.ismellsmoke.net/
mailto:sopwith@ismellsmoke.net

