Raspberry Pl 'How-To' Series

Real Time Clock - DS3231
Implementation Guide

Written by: Sopwith
Revision 1.0

February 7, 2019
sopwith@ismellsmoke.net

“If it works out of the box — what fun is that?”
1

Introduction

In order to keep the cost of the Raspberry Pi as low as possible, the designers had to leave out some
features. One of those missing items is a real-time hardware clock. For the majority of Pi freaks, this is just
fine because their Pi’'s have access to a network where they can obtain the time from a time server via the
NTTP protocol.

In fact, the Linux kernel implements a pseudo or ‘fake’ hardware clock driver that makes the hardware think
there is a real clock on board.

There are plenty of times when Makers will use a Pi in some project full of awesomeness, and they need
an accurate and permanent time keeping capability. This implementation ‘How-To’ shows how to attach a
real time clock to a Pi.

Clock Hardware

When it comes to real time clock (RTC) hardware for the Pi, there are plenty of choices. The first decision
you have to make is whether you want to mount a RTC device directly on the Pi’'s GPIO pins, or use a
separate breakout board. Your decision will be based on your specific needs and how much room you have
available to house your project.

Probably the most popular RTC chip in use for single board computers (SBC) is the DS1307. They are
amazingly inexpensive (@ $1 USD). This chip will work in most applications that do not require an accurate
timekeeper. The drawback of the DS1307 is the variance in accuracy. This chip can gain or lose seconds of
accuracy every day. In some cases, the device is known to lose +- minutes per day. The variance is due to
the accuracy of the crystals used and temperature variances.

If you are looking for something with much better accuracy, then | recommend you choose a RTC based on
the DS3231 chip. This device has a temperature sensor and will adjust its timing based on temperature. It
is accurate to +- .437 seconds per day. For me, this is something | can live with.

The device | will use in this document is shown below in Figure-1.

Figure-1

The above device is small enough to sit within the confines of a US nickel. Tiny, cheap, and accurate. A
winning combination. You can buy them online at Amazon who sells a set of five for $10.99 USD. You can
also get them on E-Bay or buy them direct from China even cheaper. Adafruit also has an excellent
collection of RTC devices. Most of them do not ship with batteries because of post restrictions.

“If it works out of the box — what fun is that?”
2

http://www.reuk.co.uk/wordpress/accurate-ds3231-real-time-clock-as-alternative-to-ds1307/
http://www.amazon.com/
https://www.adafruit.com/

Step-by-Step

In this guide, | will install the DS3231 RTC on a Raspberry Pi Zero V.1.2. The device uses the 12C interface
of the Pi and mounts right on the GPIO pins. Many of the steps | outline here are described in an excellent
document published by Adafruit.

There are 7 steps to installing the RTC.
1. Getyour Pi up and running

Enable the 12C interface

Install required support software
Install the RTC

Test the RTC

Configure the Pi for a hardware clock.
Set the RTC to the correct time.

Noook~owd

Step-1 - Get your Pi up and running with Raspian Stretch.

The first thing you need to do is get your Pi running. Head out to raspberrypi.org and download Raspian
Stretch or Stretch Lite. The former has a Window GUI while the latter is a command-line only OS. Either
one works.

Once the download completes, burn the image to an SD card and fire up your Pi. If you need help with this
step, there is a ton of resources on the web to help you. When you are up and running and connected to
the Internet, be sure to update your Pi with the latest patches.

$sudo apt-get update

$sudo apt-get upgrade

$sudo reboot

Step-2 - Enable the I2C Interface

Enable the 12C interface using the raspi-config utility. From the command window run the command:
$sudo raspi-config.

You will see the window shown in Figure-2.

Figure-2

pi@raspberrypi: ~/Desktop

File Edit Tabs Help [

Raspberry Pi Zero Rev 1.3 |

Raspberry Pi Software Configuration Tool (raspi-config)

1 Change User Password Change password for the current u
2 Hostname Set the visible name for this Pi
3 Boot Options Configure options for start-up

4 Localisation Options Set up language and regional sett

5 Interfacing Options Configure connections to peripher]

6 Overclock Cconfigure overclocking for your P

7 Advanced Options Configure advanced settings

8 Update Update this tool to the latest ve

9 About raspi-config Information about this configurat
<Select> <Finish>

“If it works out of the box — what fun is that?”
3

http://raspberrypi.org/downloads
https://cdn-learn.adafruit.com/downloads/pdf/adding-a-real-time-clock-to-raspberry-pi.pdf

Figure-3

Press <Enter> on Line-5 and you will see the window shown in Figure-3.

File Edit Tabs Help

Raspberry Pi Software Configuration Tool

P1 Camera Enable/Disable
P2 SSH Enable/Disable
P3 VNC Enable/Disable
P4 SPI

Enable/Disable

Enable/Disable

P& Serial EnablefDlséﬁle shell and kernel m

P7 1-Wire Enable/Disable one-wire interface

P8 Remote GPIOD Enable/Disable remote access to G
<Select> <Back=>

(raspi-config)

connection to the
remote command lin
graphical remote a
automatic loading
automatic loading

Press <Enter> and you will see the window shown in Figure-4.

Figure-4

File Edit Tabs Help

Would you like the ARM I2C interface to be enabled?

Select <Yes> and press <Enter> and you will see the window shown in Figure-5.

“If it works out of the box — what fun is that?”

4

Figure-5

pi@raspberrypi: ~/Desktop - o x
File Edit Tabs Help

The ARM I2C interface is enabled

Exit raspi-config. Just to be safe, reboot your Pi:
$sudo reboot.

Step-3 - Install required support software.

There are two (2) software packages that must be installed for the 12C interface to work correctly. Follow
the below steps to get them installed.

Open a command window and type in the command:
$sudo apt-get install i2c-tools.

You will probably get the output shown in Figure-6 below.

Figure-6

pi@raspberrypi: ~/Desktop

File Edit Tabs Help

pi@raspberrypil:~/Desktop 5 sudo apt-get install i2c-tools 'Ew
Reading package lists... Done

Building dependency tree

Reading state information... Done

i2c-tools is already the newest version (3.1.2-3).

0 upgraded, © newly installed, © to remove and 1 not upgraded.
pi@raspberrypi:~/Desktop S |] ‘

Next, run the command:
$sudo apt-get install python-smbus.

You will probably get the output shown in Figure-7 below.

“If it works out of the box — what fun is that?”
5

Figure-7

pi@raspberrypi: ~ - o
File Edit Tabs Help

pi@raspberrypl:~ $ sudo raspi-config

pi@raspberrypi:~ 5 sudo apt-get install python-smbus

Reading package lists... Done

Building dependency tree

Reading state information... Done

python-smbus 1s already the newest version (3.1.2-3).

8 upgraded, 0 newly installed, © to remove and © not upgraded.
pi@raspberrypi:~ $§ _

Step-4 - Install the RTC

Installation of the RTC is a snap. You simply slide it on the GPIO pins of your Pi with your Pi powered off.
Which pins you ask? Well, that can be a bit confusing because the Pi GPIO pins have a pair of reference
sets. If you look at the “Raspberry Pi Pinout” in Figure-8, the GPIO pins are labeled by their physical

location from 1-40, and also by their ‘BCM’ number.

Figure-8*
s_aspl:ierry Pi Physical Number
Inou
" |BCM Number
3v3 Power v Power
) 5v Power
Ground
_— BCM 14 (rxp)
BCM Number BCM 15 o)
BCM 18 (pwmny
Ground
BCM 23
3v3 Power BCM 24
BCM 10 mosy Ground
BCM 25
BCM 8 ceg
BCM 7 cen
BCM 0 (o_sp) BCM 1 jo_sc)
BCM 5 Ground
BCM 6 BCM 12 (pwmn)
BCM 13) Ground
BCM 19 BCM 16
BCM 26 BCM 20 (mosi
BCM 21 (scix)

The physical numbers start with 1 and alternate across the board and then down. This puts all of the even
pins on one side, and the odd pins on the other. Pin-1 on most Pi’s is on the side of the board closest to the

SD card. Be sure to know where Pin-1 is on your particular Pi board.

The BCM numbers are assigned by Broadcom, the maker of the Pi's CPU. In most documentation, code,
and discussions around the Pi universe, when describing a GPIO pin number, they are usually talking

about the BCM pin number, not the physical pin number.

https://pinout.xyz/pinout/pin19_gpiol0

“If it works out of the box — what fun is that?”
6

An interesting side-note here. The Raspian Desktop image has a cool utility named pinout that you can run
from a command prompt. An image will appear as shown in Figure-9. This is really handy when you need it.

Figure-9

Camera ports (CSI)
Display ports (DSI):

DS3232 -
Pins GPIO03Z) (¢

GP104 GPI014

| 0) GPIO1S

GPIO18

GPID23

GPID12

GPIO16
GPTO020
GPID21

The DS3231 RTC | am using slides over physical pins 1,3,5,7 and 9, or in BCM terminology the 3v pin,
BCM pins 2,3 and 4, and the ground pin. Figure-10 and Figure-11 below shows the RTC installed on my Pi
Zero.

Figure-10

“If it works out of the box — what fun is that?”
7

Figure-11

Step-5 - Test the RTC

Once the RTC is installed on the correct GPIO pins, boot up your Pi and open a command window. From
the command line run the command:

$sudo i2cdetect -y 1

This is shown below in Figure-12.

Figure-12

pi@raspbemypi: ~ - O x

File Edit Tabs Help

pl@raspberrypl ~ 5 sudo iZcdetect -y 1 -
8 1 3 4 5 6 7 8 9 a b c de f

p1@raspberryp1 ~ 5

If your Pi recognized the RTC, you should see its I2C hardware address somewhere in the grid. In my
case, the RTC has an address of 68. The address of your device may be different. Also note there may be
more that one address shown in the grid if you have other 12C devices attached to your Pi.

Now that we know the hardware all works, we need to make some more configuration changes.

Step-6 — Configure the Pi for a hardware clock
There are a few things we need to do to tell the Pi it has its own clock on board. First, add a line to the
/boot/config.txt file.

Open the config.txt file for editing:
$sudo nano /boot/config.txt.

“If it works out of the box — what fun is that?”
8

At the bottom of the file add a line:
dtoverlay=i2c-rtc,ds3231

The line you need to add is shown below in Figure-13.

Figure-13

pi@raspberrypi: ~ - O x

File Edit Tabs Help

GNU nano 2.7.4 File: /boot/config.txt

#uncomment to overclock the arm. 788 MHz is the default.
#arm_freq=800

Uncomment some or all of these to enable the optional hardware interfaces
dtparam=i2c_arm=on

#dtparam=1i2s=on

#dtparam=spi=on

Uncomment this to enable the lirc-rpi module
#dtoverlay=lirc-rpi

Additional overlays and parameters are documented /boot/overlays/README

Enable audio (loads snd_bcm2835)
dtparam=audio=on

2019-92-06 Sopwith - added RTC chip.
dtoverlay=i2c-rtc,ds3231

B cut Text [@] Justify Cur Pos
WY Uncut Text{@] To Spell Go To Line -,

BN Write Out Where Is
Bl Read File Replace

Save the file: <Ctrl> <0> <Enter> <Ctrl><x>.

Reboot your Pi and run the command:
$sudo i2cdetect -y 1

This is shown below in Figure-14.

Figure-14

pi@raspberrypi: ~ =
File Edit Tabs Help

pl@raspberrypl ~ 5 sudo i12cdetect -y 1 -
g 1 3 45 6 7 8 9 abc de f

0e: R e

1@ - —- m- om oo oo ol oo ool oo oo -

]

BO: oo mm mm e e em o e em oo oo oo

p1@raspberryp1 ~ 5 _

Notice that the 12C address of the RTC changed from 68 to UU. This indicates that the kernel has taken
over control of the device. This is exactly what we want.

Next, we need to remove the fake-hwclock package from the Pi. To so do, enter the following command:
$sudo apt-get -y remove fake-hwclock.

The output of this command is shown in Figure-15.

“If it works out of the box — what fun is that?”
9

Figure-15

pi@raspberrypi: ~

File Edit Tabs Help

pi@raspberrypi:~ S sudo apt-get -y remove fake-hwclock -
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages will be REMOVED:
fake-hwclock
© upgraded, @ newly installed, 1 to remove and @ not upgraded.
After this operation, 32.8 kB disk space will be freed.
(Reading database ... 808757 files and directories currently installed.)
Remowving fake-hwclock (8.11+rptl) .
Processing triggers for man-db (2.7.6.1-2) ...
pi@raspberrypi:~ 5 _

Remove the fake-hwclock from the run command daemon by running the command:
$sudo update-rc.d -f fake-hwclock remove.

This is shown in Figure-16.

Figure-16

pi@raspberrypi: ~

File Edit Tabs Help

pi@raspberrypi:~ 5 sudo update-rc.d -f fake-hwclock remove -
pi@raspberrypi:~ $ _

Remove the fake-hwclock for systemd with the command:
$sudo systemctl disable fake-hwclock remove.

This is shown in Figure-17.

Figure-17

pi@raspberrypi: ~

File Edit Tabs Help

pil@raspberrypi:~ S sudo update-rc.d -f fake-hwclock remove -
pi@raspberrypi:~ 5 sudo systemctl disable fake-hwclock

Synchronizing state of fake-hwclock.service with SysV service script with /lib/s
ystemd/systemd-syswv-install.

Executing: /lib/systemd/systemd-syswv-install disable fake-hwclock
pi@raspberrypi:~ $ _

Edit the /lib/udev/hwclock-set file using the below command:
$sudo nano /lib/udev/hwclock-set

Look for the below three lines and comment them out:
if[-e /run/systemd/system]; then
exit 0

fi

These lines should be near or at the top of the file. You can see the required changes in Figure-18.

“If it works out of the box — what fun is that?”
10

Figure-18

pi@raspberrypi: ~ _ o x

File Edit Tabs Help

GNU nano 2.7.4 File: /lib/udev/hwclock-set Modified

#1/bin/sh
Reset the System Clock to UTC if the hardware clock from which it

was copiled by the kernel was in localtime.

dev=51

2019-9
#if [

exit ©
#f 5

1

if [-e /run/udev/hwclock-set]; then
exit @
fi

if [-f /fetc/default/rcS] ; then
. fetc/default/rcs

fi

W Write Out Where Is
W Read File Replace

@8 Cut Text QA Justify Cur Pos
Wl Uncut Text@l To Linter Go To Line «

Finally, reboot your Pi so the changes will take effect.
Step-6 - Set the RTC to the correct time
We are done with all the configuration stuff. Now we need to make sure the RTC has the correct time.

From a command prompt enter the following command:
$sudo hwelock -D r

This is shown in Figure-19.

Figure-19

pi@raspbermypi: ~ - o x
File Edit Tabs Help

pi@raspberrypi:~ $ sudo hwclock -D -r -
hwclock from wtil-linux 2.29.2

Using the /dev interface to the clock.

Assuming hardware clock is kept in UTC time.

Waiting for clock tick...

fdev/rtc does not have interrupt functions. Waiting in loop for time from /dev/r
tc to change

...got clock tick

Time read from Hardware Clock: 2819/02/87 01:23:35

Hw clock time : 2019/02/07 01:23:35 = 1549502615 seconds since 1969

Time since last adjustment is 1548502615 seconds

Calculated Hardware Clock drift is 0.000000 seconds

2019-02-06 17:23:34.814713-0800

pi@raspberrypi:~ S _

As you can see, my hardware clock is set to the right time. In this case, since | have a WiFi USB device
attached to a powered hub, my Pi Zero has access to the Internet. During the last reboot, an NTTP time

request was made from the Internet. The time returned was used to set the hardware clock. Thus, | do not
have to do anything.

If your Pi is not connected to the Internet, you may have to set the RTC yourself. This can be done a

couple of ways, including the use of the hwclock command from above. A Google search will show how to
do this if you are unsure.

“If it works out of the box — what fun is that?”
11

Summary

In order to save on costs and because the board space on a Raspberry Pi is so limited, no version of the Pi
comes with a hardware clock. This means the device is completely dependent on an Internet connection to
set the “fake” hardware clock to the right time. This is problematic for those Makers who do not have or
want an Internet connection but still need an accurate time clock.

This “How-To” walks through the process of installing and configuring a tiny, low-cost and highly accurate

hardware clock to a Raspberry Pi. Although these steps highlight a small clock that slides over the Pi GPIO
pins, these instructions can be used to install any hardware that used the 12C bus.

Send corrections, comments, complaints, ideas, or any other feedback to: sopwith@ismellsmoke.net.

“If it works out of the box — what fun is that?”
12

mailto:sopwith@ismellsmoke.net

